기계학습(Machine Learning)에 대해서 관심이 높아지는 것 같습니다. 하지만 관련된 자료가 많지 않은 듯 해서 올려봅니다. 먼저 최근 Facebook 친구가 되신 분의 타임라인에 올라와서 확인한 자료인데요. 빅데이터에서의 기계학습(Machine Learning on Big Data)로서 잘 구성된 것 같습니다. 이 자료에 대한 설명과 함께 들으면 좋겠다는 생각이 들기도 하네요.. Machine Learning on Big Data from Max Lin 그리고 스탠포드 대학의 Andrew Ng 교수의 Machine Learning 강의도 훌륭합니다. iTunes University에서 "Machine Learning"으로 검색해도 나오구요. Coursera에서도 무료로 볼 수 있습니다. (ht..
Christoper M. Bishop이 쓴 "Pattern Recognition and Machine Learning" 이란 책을 스터디하고 있습니다. 기계학습(Machine Learning)을 배워보기 위해서 살펴보고 있는데요. 책이 재미있으면서도 조금은 난이도가 있네요. 기계학습이란? 기계학습은 컴퓨터가 학습할 수 있도록 알고리즘과 기술을 개발하는 분야를 의미합니다. 이를 통해 다양한 패턴 인식이나 예측등을 수행할 수 있겠죠. 기계학습을 하기위해서는 수학적 배경 지식들이 중요한데요. 이 책에서도 1장에서 베이즈확률(Bayesian probabilities)와 함께 정규분포를 다룬 Gaussian Distribution 등 여러가지 이야기들이 나오고 있습니다. 앞으로 계속 하나씩 정리해 보도록 하죠. ..